物理研究所等在非晶材质的重力学研讨中获得进

2019-07-13 08:28栏目:奥门新萄京娱乐场
TAG:

在 T1 的测量过程中,谷歌量子 AI 团队发现某些量子比特的操作频率要比其它量子比特显著地差一些,形成了一些能量弛豫的危险区,如下图。他们的研究表明,之所以会有这些危险区是由于材料的缺陷,这些缺陷自己形成了新的局部量子系统,当它们的频率和量子比特的频率有交叠(也就是形成共振)时,它们就会从量子比特中吸收能量。令人惊讶的是,他们还发现这些能量弛豫危险区不是固定的,在几分钟到几小时的各种不同时间尺度中,危险区的分布也有所不同。根据这些观测结果,谷歌量子 AI 团队得出结论,正是材料缺陷在与量子比特之间产生、脱离共振的过程中的频率动态特性对性能涨落造成了最为显著的影响。

图片 1

这些缺陷,一般被称为二阶系统,研究人员们普遍认为它们存在于超导电路的材料界面中。然而,即便经过了几十年的研究,它们的显微来源还是让研究人员感到迷惑。在这项研究中,除了明确了量子比特性能涨落的原因之外,谷歌量子 AI 团队采集到的数据也为揭示缺陷动态特性的物理原理带来了曙光,这正是谜题的重要部分。有趣的是,根据热力学定律,研究人员们即便知道这些缺陷的存在,本来也不认为它们会表现出任何动态特性。它们的能量要比量子处理器中使用的热能高出一个数量级左右,所以在这时它们应当是被「冻住」的。现在发现它们其实并没有被冻住,这说明它们表现出动态特性的原因可能是因为它们和其它缺陷之间产生了相互作用,这些作用的能量要低得的多,所以可以被量子处理器的热能激活。

相关研究成果发表在近期的《物理评论快报》[Phys. Rev. Lett. 120, 155501 ]上,该工作得到了国家自然科学基金委的资助和支持。

雷锋网 AI 科技评论按:量子处理器作为前沿的研究课题,即便各大世界顶级实验室和企业研究院们都在不断做出新的进展,亟待解决的问题仍然层出不穷。谷歌量子 AI 团队的一篇新博客就介绍了他们在量子处理器性能稳定问题下的新研究成果。雷锋网 AI 科技评论编译如下。

另外,汪卫华研究组和北京计算科学研究中心管鹏飞研究组与中国科学技术大学物理系教授徐宁研究组合作,发现了过冷液体的动力学非均匀性和脆度之间的定量关联性,并从恒定动力学非均匀性的角度出发给出了弛豫时间随温度变化的普适描述,揭示了过冷液体中动力学非均匀性与结构弛豫之间的内在关联性。研究分析发现,从恒定动力学非均匀性的角度出发,可以得到对各过冷液体结构弛豫的普适描述:对于不同类型的过冷液体,相同的动力学非均匀性状态下,可以得到各体系的特征时间尺度和特征温度,利用这两个特征参量可以很好地对所有过冷液体的弛豫时间和温度之间关系进行标度归一。这一研究结果表明,动力学非均匀性在认识过冷液体动力学特性,乃至对玻璃化转变本质的理解方面有着十分重要的地位。

via ai.googleblog.com,雷锋网 AI 科技评论编译返回搜狐,查看更多

图片 2

责任编辑:

图3 不同过冷液体的弛豫时间和温度之间归一标度图。

原标题:为什么量子处理器的性能会有涨落?谷歌找到的答案是材料有缺陷

非晶态物质是一种微观结构长程无序、能量长期处于亚稳态的复杂多体相互作用体系。非晶态合金是50多年前发现的一类新型的非晶材料,它的发现极大丰富了金属物理的研究内容,日益成为凝聚态物理的研究前沿。非晶合金表现出很多独特的物理、化学性质,特别是块体非晶合金具有优异的力学性能,例如超高的强度和断裂韧性、高强度、低弹性模量等。块体非晶合金被认为是迄今为止发现的最强、最硬、最软、最韧的金属结构材料。尽管近年来在非晶合金方面涌现出大批的研究成果,但非晶合金中的一些基本问题仍然缺乏清晰的认识,例如非晶态转变的物理本质和非晶合金优异力学性能的物理本源等。目前的研究表明这些问题都与非晶合金中复杂的多重弛豫行为有关联。在非晶态合金形成过程中,存在长时结构弛豫与短时次级弛豫并存的多重动力学行为,次级弛豫的行为表征以及微观机制是目前非晶合金研究中的关键问题。

版权声明:本文由奥门新萄京娱乐场发布于奥门新萄京娱乐场,转载请注明出处:物理研究所等在非晶材质的重力学研讨中获得进